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SUMMARY

An investigation of some form of preconditioning approach for the incompressible Navier–Stokes
equations is presented. We have implemented preconditioning in conjunction with a high-resolution
(characteristics-based) scheme for the advective terms, a non-linear multigrid algorithm and an explicit
fourth-order, total variation diminishing (TVD) Runge–Kutta scheme. Computations have been carried
out for �ows through suddenly-expanded and expanded–contracted geometries, for a broad range of
Reynolds numbers, featuring �ow separation as well as instabilities. We present comparisons of the
preconditioned and non-preconditioned solutions against experimental and previous computational re-
sults and show that for the cases exhibiting instabilities, preconditioning has a positive e�ect on the
convergence, but the accuracy is adversely a�ected. Further investigations of other forms of precondi-
tioning need to be performed in order to shed light on the above issues. Copyright ? 2005 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Preconditioning techniques in CFD aim to overcome sti�ness in the solution of the equa-
tions [1, 2]. There are two main streams of research. Firstly, the development of precondition-
ing for low speed and incompressible �ows. The arti�cial compressibility method of Chorin
[3] can also be viewed as a preconditioning technique. Secondly, methods that aim to alle-
viate discrete sti�ness in the Euler and Navier–Stokes equations, including clustering high
frequency eigenvalues away from the origin, thus, providing rapid damping by a multi-stage
scheme, directional coarsening multigrid and alternating direction implicit preconditioners.
Preconditioning methods for the compressible equations have been investigated by several
researchers; see Reference [2] for a review on this topic. They present generalizations of
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the incompressible arti�cial compressibility formulation to compressible equations. Turkel’s
approach modi�es the transient behaviour of the Navier–Stokes equation in such a way that
the sti�ness is removed from the eigenvalues. Lee’s and van Leer’s [4] preconditioner uses
a minimum range in the characteristic speeds and a minimum variation from the associated
eigenvectors. Lynn [5] further developed the idea of Reference [4] and found that at stagnation
points the preconditioner produced instabilities which could not be �xed.
Here, we investigate the e�ect of preconditioning on the accuracy and e�ciency of in-

compressible �ows. In general, we aim to investigate the circumstances in which precon-
ditioning should be used. We have implemented Turkel’s preconditioner [1] in conjunction
with the arti�cial compressibility of the Navier–Stokes equations [3], a characteristics-based
(high-resolution) scheme for the discretization of the advective terms [6, 7], an explicit, TVD
fourth-order Runge–Kutta scheme [8] and a multigrid algorithm [9].
Our work concentrates on separated internal �ows featuring instabilities that manifest as

symmetry-breaking bifurcations (see Reference [10] and references therein, for example). The
importance of understanding non-linear bifurcation phenomena in �uid mechanics is moti-
vated by the quest to obtain a deeper understanding of hydrodynamic stability and laminar-
to-turbulent transition. It is also equally important to understand the behaviour of numerical
methods that are used to simulate such phenomena. Therefore, we have performed several
numerical experiments for unstable, separated channel �ows with and without the use of pre-
conditioning. We show that preconditioning has a positive e�ect on the convergence (towards
steady state solution) at low Reynolds numbers as long as the �ow remains stable. However,
the numerical studies reveal that preconditioning has an adverse e�ect on the accuracy of
bifurcating unstable �ows (still at low Reynolds numbers). This is shown by comparing the
computations based on preconditioning against experimental results and computations without
preconditioning.

2. NUMERICAL FRAMEWORK

We have employed the incompressible Navier–Stokes equations (for steady state �ow
problems) in their pseudo-compressible formulation
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where ui are the velocity components (the indices i; j=1; 2 refer to the space co-ordinates
x; y for a two-dimensional problem), p is the pressure and Re is the Reynolds number; all
variables are properly normalized. For steady �ows we obtain � ≡ t. The system is integrated
in a pseudo-time � to a steady state, assuming an arti�cial speed of sound

√
�, where � is

the arti�cial compressibility parameter.
We have employed a high-resolution, Godunov-type method known as the characteristics-

based scheme [6] for the discretization of the advective terms. The scheme is a �ux averaging
procedure according to which, the �ow variables, and subsequently the �uxes, are calculated
at the cell faces by a Godunov-type approach. In our model the default time integration with
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respect to � employs a fourth-order TVD Runge–Kutta scheme [8] (selected, primarily, for
the optimum performance on non-uniform grids) while a non-linear multigrid method [9] is
used to accelerate the convergence towards the steady state.
The reconstructed characteristics-based variables [6, 7] are used in the calculation of the in-

tercell �uxes. For a curvilinear co-ordinates system (�; �), the reconstructed variables
associated with the advective �ux in the � direction are given by

Ũ=




p̃

ũ
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where s=
√
�0
2+� (�0 = ux̃+vỹ); k̃= �k=

√
�2x+�2y (k= x; y) and

R=
1
2s
[p1 − p2 + x̃(�1u1 − �2u2) + ỹ(�1v1 − �2v2)] (4)

k1 =p1 + �1(u1x̃ + v1ỹ); k2 =p2 + �2(u2x̃ + v2ỹ) (5)

The variables pl; ul; vl (l=0; 1; 2) are the primitive variables on the characteristics, which
are calculated by a third-order Godunov-type interpolation [7]. The reader is referred to
References [6, 7, 9] for further information regarding the numerical scheme and the multi-
grid approach.
Turkel’s preconditioning approach‡ replaces the momentum equation with
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where � is yet another parameter controlling the attenuation of the �ow divergence towards
zero. Systems (2) and (6) are hyperbolic since their eigenvalues are real. For example, the
eigenvalues associated with the momentum �ux in the x-direction (in a Cartesian system) are
given by

�0 = u; �1;2 =
(1− �)u±

√
(1− �)2u2 + 4�
2

(7)

The choice of � needs to be optimized to minimize the largest possible ratio of wave
speeds. Turkel proposed the calculation of � as

� 2 =



max[(2− �)(u2 + v2); �]; �¡1

K max[�(u2 + v2); �]; �¿1
(8)

where � is a function of the �uid speed (u2+v2 ). The value of � should be a fraction
of (u2+v2 )max and the value of K should be chosen slightly larger than one. In the present

‡Note that in Reference [1] the derivation was presented for the inviscid incompressible equations, but it can also
be formally applied to the system of the Navier–Stokes equations.
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investigation, we have carried out computations for a broad range of values for the parameters
� and � (see discussion below). Note that the dissipation properties of the characteristics-based
scheme will also alter as a result of the preconditioned eigenvalues.

3. RESULTS

We have carried out various numerical experiments for �ows through suddenly expanded–
contracted (SEC) and suddenly-expanded (SE) geometries at low Reynolds numbers. At cer-
tain Reynolds numbers these �ows feature instabilities manifested in the form of a symmetry-
breaking bifurcation. The geometries we have considered are a SEC channel for which
experimental results (Figure 1) are available [11] and the (classical) SE channel problem
for which there are published computational and experimental results [10, 12, 13].
Di�erent computational grid sizes were employed and it was found that 30 000 and 25 000

grid points were su�cient to obtain grid independent solution for the expanded–contracted
and SE channels, respectively. Computations have been carried out for a broad range of low
Reynolds numbers spanning from 1 to 250, based on the maximum inlet velocity and upstream
channel height; a parabolic inlet velocity pro�le was used in all cases. Both �ow geometries
lead to symmetric �ow separation at lower Reynolds numbers and present a symmetry-breaking
bifurcation as the Reynolds number increases. The expanded–contracted channel returns to a
symmetric �ow as the Reynolds number further increases [11].
For both �ow geometries, the best convergence results were obtained for � values between

0 and 1. When �= −1 the original arti�cial compressibility formulation is obtained, while for
�=1 the eigenvalues �1 and �2 are only functions of �. In some cases, this has dissipative
e�ects on the solution. It was found that preconditioning does not have any signi�cant e�ect
on the convergence at Reynolds numbers Re¡10, but it does have a positive e�ect at higher
Reynolds numbers. In this case the total number of multigrid cycles can be reduced by
30%. The calculation of � as proposed by Turkel (Equation 8) was found not to work
e�ectively when the Reynolds number was reduced below 20. A �xed � value was found to
provide better convergence results (both for preconditioned and non-preconditioned solutions)
and its precise values can signi�cantly a�ect the convergence. For example, for a Reynolds

Figure 1. Experimental results at Re = 116 [11] for the suddenly contracted-expanded
geometry. Reproduced with permission from Cambridge University Press.
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Figure 2. Non-preconditioned solution at Re = 116.

Figure 3. Preconditioned solution at Re = 116.

Figure 4. Non-preconditioned solution at Re = 250.

number of 10 and �=1, the number of multigrid cycles needed to obtain a converged solution
was approximately 1780. For �=0:8 a converged solution was reached after 800 multigrid
cycles.
However, the most important e�ects of preconditioning were found to be on the accuracy

of the �ow solution, especially in the range of Reynolds numbers where instability occurs.
For lower Reynolds numbers, where the �ow is symmetrically separated the accuracy of the
solution was found not to be altered by the use of preconditioner for the entire range of �
and � values used here.
Figures 2–5 as well as Tables I and II summarize the results of the preconditioned and

non-preconditioned solutions. Table II provides comparisons between the present results and
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Figure 5. Preconditioned solution at Re = 250.

Table I. Results for preconditioned and non-preconditioned solutions for the two
channel geometries (see text for details).

Case Reynolds number Preconditioned solution Non-preconditioned solution

SEC 1–20 Symmetric Symmetric
SEC 60 Symmetric (di�usive) Symmetric
SEC 116 Asymmetric (di�usive) Asymmetric
SEC 200 Asymmetric Symmetric
SE 0.1–1 Symmetric Symmetric
SE 100 Symmetric (di�usive) Symmetric
SE 250 Asymmetric (di�usive) Asymmetric

Table II. Comparison of solutions with previously published results [10–12] for the
two geometries, for symmetric (S) and asymmetric (A) cases.

Case Re Published results from [10–12] Preconditioned solution Non-preconditioned solution

SEC 116 �x=0:019m (A) �x=0 (A) �x=0:018m (A)
SEC 200 Symmetric Asymmetric Symmetric
SE 100 Bubble size= 0.016m (S) Bubble size= 0.019m (S) Bubble size = 0.0159m (S)
SE 250 �x=0:02m (A) �x=0:027m (A) �x=0:02m (A)

previous experimental and computational studies. All the results refer to grid independent solu-
tions. For the expanded–contracted channel, the experimental �ow visualization clearly shows
the occurrence of instability in the form of asymmetric separation. This is correctly predicted
by the non-preconditioned solution, but not the second separation bubble on the upper right
corner of the geometry. Further, for the same geometry at Re=200 the �ow again becomes
symmetric but the preconditioned solution still remains asymmetric (Table I) with di�erent
sized bubbles on the lower and upper walls. At Re=116, the computed distance �x between
the re-attachment points of the upper and lower bubbles without using preconditioner agrees
well (Table II) with the experimental results of Reference [11], where in the preconditioned
solution the bubble does not re-attach before it reaches the wall of the contraction part of the
channel (i.e. �x=0 in Table II).
Similarly, the preconditioner has adverse e�ects on the accuracy of the suddenly-expanded

channel �ow. For example, at Re=250 where the �ow exhibits an instability (Figures 4 and 5)
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the preconditioned solution is qualitatively correct, but not with respect to the size of sep-
aration. Table II compares the present preconditioned and non-preconditioned solutions with
the results of References [10, 12] for symmetric (stable) �ow at Re=100 and asymmetric
(unstable) �ow at Re=250.
Parallel to this investigation, we have conducted several numerical experiments [13]

using di�erent Godunov-type methods without the use of a preconditioner. These investi-
gations showed that more dissipative advective schemes generally lead to a stable �ow, espe-
cially when the solution is under-resolved. Even though a rigorous analysis of the dissipation
e�ects of non-linear approximations such as high-resolution Godunov-type schemes in combi-
nation with preconditioning appears very di�cult, the similarity in the behaviour of
certain Godunov-type schemes with the preconditioned results obtained here seems to indicate
that preconditioning has an added dissipation e�ect on the solution, when the �ow exhibits
symmetry-breaking bifurcation. Furthermore, this kind of ‘non-physical’ behaviour exhibited
by the preconditioned method at certain Reynolds numbers has also some similarities with
the volatile numerical behaviour of some time integration methods, which perform di�erently
depending on the solution problem [14].

4. CONCLUSIONS

A numerical study showing the e�ects of preconditioning on �ows through SEC and SE
channels was presented. Laminar �ow calculations were performed with and without precon-
ditioning in order to assess its e�ects on the accuracy and e�ciency of computations. At higher
Reynolds number �ows the use of preconditioning reduced the number of multigrid cycles,
but adversely a�ected the solution results. For Reynolds numbers in the range of instability,
the use of preconditioning led to either an incorrect stable solution or to an under-estimation
of the size of the separation bubble. At lower Reynolds number �ows the present form of
preconditioning neither altered the accuracy of the solution nor had a signi�cant e�ect on the
convergence. Finally, computational studies on the accuracy of other forms of preconditioning
on unstable �ows, e.g. by scaling the pseudo-acoustic speed according to the di�usive time
scale [15], will be presented in a future paper.
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